OF THE AMERICAN CHEMICAL SOCIETY

Registered in U.S. Patent Office. © Copyright. 1976, by the American Chemical Society:

Substituent Effects and the Cis-Trans Isomerization of Diazenes

James M. Howell* and Lawrence J. Kirschenbaum
Contribution from the Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210. Received April 2, 1975

Abstract

We have performed $a b$ initio calculations on substituted diazenes, $R-N=N-R^{\prime}$ where R and R^{\prime} can be $-H$, $-\mathrm{CH}_{3},-\mathrm{F}$, and -CN . The geometry optimized calculations favored the trans geometry by about $6 \mathrm{kcal} / \mathrm{mol}$ when neither R nor R^{\prime} is F. When there is a single F substituent, the trans is favored by about $1 \mathrm{kcal} / \mathrm{mol}$. With $R=R^{\prime}=F$, the cis is slightly preferred. An electronegativity argument is offered for these trends based on the observation that the substituents are more negative in the cis geometry than in the trans. The mechanism of the cis-trans interconversion was investigated. In all cases the inversion mechanism was found to be of lower energy than was the rotation mechanism. The activation energy was found to vary with the π-electron accepting ability of the inverting group in the order $\mathrm{F}>\mathrm{H}>\mathrm{CH}_{3}>\mathrm{CN}$. When R was H and R^{\prime} was NO_{2} or CHO , the isomerization pathway is calculated to be one which involves both an inverting motion and a rotation about the $\mathrm{N}-\mathrm{NO}_{2}$ or $\mathrm{N}-\mathrm{CHO}$ bond so as to maximize the stabilization obtained through conjugative interactions. When R was H and R^{\prime} was NH_{2}, the opposite results are obtained. The effect of interaction between the R and R^{\prime} substituents on the activation energy was studied. If the noninverting substituent is an efficient electron withdrawer, a decrease in the activation energy was calculated.

There has been a substantial and sustained interest in the interactions between lone pairs and substituents. At one level these investigations concern the height of the inversion barrier for substituted ammonias, where it has been established, both theoretically and experimentally, that the choice of substituents can have a sizable effect. ${ }^{1}$ For example, the inversion barrier of $\mathrm{NH}_{2} \mathrm{~F}$ is calculated ${ }^{2}$ to be 20.3 $\mathrm{kcal} / \mathrm{mol}$ (an experimental value ${ }^{3}$ for difluoroamines is greater than $18 \mathrm{kcal} / \mathrm{mol}$) while that of $\mathrm{NH}_{2} \mathrm{CN}$ is calculated ${ }^{2}$ to be $1.8 \mathrm{kcal} / \mathrm{mol}$ (experimentally ${ }^{4} 1.9$). Of particular experimental importance have been the cyclic aziridine systems. Andose, Lehn, Mislow, and Wagner observed ${ }^{5}$ a correlation of inversion rates with the Hammett σ^{-}constants for a variety of meta- and para-substituted N-phenyl-2,2-dimethylaziridines.

Substituent effects have also been of interest on doubly bonded nitrogen systems. The parent systems most studied have been the diazene ${ }^{6-39}$ ($\mathrm{HN}=\mathrm{NH}$) methylenimide ${ }^{30,40-55}\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{NH}\right)$, and carbodiimide ${ }^{28,56,57}$ ($\mathrm{HN}=$ $\mathrm{C}=\mathrm{NH}) .{ }^{58}$ The three systems are similar to each other and conclusions reached for one are most likely applicable to the others. Most of the ab initio theoretical studies of the diazene system have centered on the $\mathrm{N}_{2} \mathrm{H}_{2}$ molecule. ${ }^{28-39}$ It is worthwhile noting that substitutional effects have been systematically examined in the theoretical spectral studies of Ditchfield, Del Bene, and Pople ${ }^{36}$ for the (n, π^{*}) excitation as well as that of Radom, Hehre, and Pople. ${ }^{34}$

In the present paper we describe the application of ab initio, geometry optimized calculations to a study of substitu-
ent effects on the singlet ground-state properties of diazenes. In particular we are concerned with (a) the cistrans energy difference, (b) the effect of substituents on the energetics of the cis-trans isomerization pathway (see Scheme I), and (c) the interaction of the inverting and noninverting substituents in the equilibrium and transition state geometries.

Calculations

The ab initio calculations were performed using a minimal STO-3G basis set ${ }^{63 \mathrm{a}}$ with the GAUSSIAN-70 program. ${ }^{64}$ In a few cases the results were checked by using an extended STO4-31G basis set. ${ }^{63 b}$

The geometries were optimized subject to the following constraints: for methyl groups, C-H was kept at $1.09 \AA$ and the HCH angle at 109.47°; the $\mathrm{N}-\mathrm{C} \equiv \mathrm{N}$ linkage was kept at 180°. The method of optimization consisted of successively optimizing one geometric parameter after another with the aid of parabolic fitting. At least two cycles, wherein each parameter was optimized, were performed for each molecule. Our estimate is that bond lengths are optimized to $\pm 0.002 \AA$ and bond angles to $\pm 1^{\circ}$.

Overall Results

The calculated energies and Mulliken populations of the optimized cis and trans isomers as well as some transition states for each molecule ($\mathrm{R}-\mathrm{N}=\mathrm{N}-\mathrm{R}$) studied are presented in Table I. Several trends may be immediately noticed. The N1-N2 overlap population is always higher in

Table I. Calculated Characteristics of the Diazene Molecules Studied. Values Are Reported for the Cis and Trans Isomers and the Inversion Transition State

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\(\mathrm{R}-\mathrm{N} 1=\mathrm{N} 2=\mathrm{R}^{\prime} a\)} \& \multicolumn{7}{|c|}{Muliken population analysis} \\
\hline \& \& Gross charges \& \multirow[b]{2}{*}{R} \& \multirow[b]{2}{*}{R'} \& \multicolumn{3}{|c|}{Overlap populations} \\
\hline \& \(E\), hartrees \& N1 N 2 \& \& \& \(\mathrm{N} 1=\mathrm{N} 2\) \& R \& R' \\
\hline \multicolumn{8}{|l|}{\(\mathrm{FN}=\mathrm{NF}\)} \\
\hline Cis \& -303.44098 \& 0.0410 .041 \& F: -0.041 \& F: -0.041 \& 0.752 \& FN: 0.336 \& NF: 0.336 \\
\hline Trans \& -303.44085 \& \(0.032 \quad 0.032\) \& F: -0.032 \& F: -0.032 \& 0.742 \& FN: 0.345 \& NF: 0.345 \\
\hline Invts \& -303.30752 \& 0.102-0.098 \& F: -0.101 \& F: 0.097 \& 0.815 \& FN: 0.305 \& NF: 0.344 \\
\hline \multicolumn{8}{|l|}{\(\mathrm{HN}=\mathrm{NH}\)} \\
\hline Cis \& -108.54524 \& -0.142-0.142 \& H: 0.142 \& H: 0.142 \& 0.834 \& HN: 0.587 \& NH: 0.587 \\
\hline Trans \& -108.55695 \& -0.161-0.161 \& H: 0.161 \& H: 0.161 \& 0.828 \& HN: 0.595 \& NH: 0.595 \\
\hline Invts \& -108.45113 \& -0.100-0.285 \& H: 0.107 \& H: 0.279 \& 0.895 \& \(\mathrm{HN}: 0.550\) \& NH: 0.712 \\
\hline \multicolumn{8}{|l|}{\(\mathrm{H}_{3} \mathrm{CN}=\mathrm{NCH}_{3}{ }^{\text {b }}\)} \\
\hline Cis \& -185.71566 \& -0.108-0.108 \& \begin{tabular}{l}
C: -0.128 \\
H: 0.079
\end{tabular} \& \begin{tabular}{l}
C: -0.128 \\
H: 0.079
\end{tabular} \& 0.824 \& \[
\begin{aligned}
\& \mathrm{CN}: 0.562 \\
\& \mathrm{CH}: 0.761
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { NC: } 0.562 \\
\& \text { CH: } 0.761
\end{aligned}
\] \\
\hline Trans \& -185.72651 \& -0.122-0.122 \& C: -0.114 \& C: -0.114 \& 0.820 \& \(\mathrm{CN}: 0.573\) \& NC: 0.573 \\
\hline \& \& \& H: 0.079 \& H: 0.079 \& \& CH: 0.762 \& \(\mathrm{CH}: 0.762\) \\
\hline Invts \& -185.62834 \& -0.063-0.222 \& C: -0.133 \& C: -0.046 \& 0.881 \& \(\mathrm{CN}: 0.515\) \& NC: 0.695 \\
\hline \& \& \& H: 0.062 \& H: 0.093 \& \& CH: 0.759 \& \(\mathrm{CH}: 0.762\) \\
\hline Cis \& -289.61199 \& -0.022-0.022 \& C: 0.138 \& C: 0.138 \& 0.808 \& CN1: 0.632 \& N2C: 0.632 \\
\hline \& \& \& N3: -0.116 \& N4: -0.116 \& \& N3C: 1.424 \& CN4: 1.424 \\
\hline Trans \& -289.62258 \& \(-0.035-0.035\) \& C: 0.161 \& C: 0.061 \& 0.798 \& CN1: 0.648 \& N2C: 0.648 \\
\hline \& \& \& N3: -0.127 \& N4: -0.127 \& \& N3C: 1.429 \& CN4: 1.429 \\
\hline Invts \& -289.54988 \& 0.024-0.119 \& C: 0.135 \& C: 0.226 \& 0.882 \& CN1: 0.586 \& N2C: 0.938 \\
\hline \& \& \& N3: -0.144 \& N4: -0.123 \& \& N3C: 1.427 \& CN4: 1.322 \\
\hline \multicolumn{8}{|l|}{FNNH} \\
\hline Cis \& -206.00282 \& 0.056-0.154 \& F: -0.074 \& H: 0.172 \& 0.812 \& FN: 0.333 \& NH: 0.585 \\
\hline Trans \& -206.00449 \& 0.039-0.169 \& F: -0.056 \& H: 0.186 \& 0.794 \& FN: 0.340 \& NH: 0.606 \\
\hline R' Invts \& -205.91906 \& \(0.097-0.281\) \& F: -0.112 \& H: 0.297 \& 0.927 \& FN: 0.306 \& NH: 0.707 \\
\hline R Invts \& -205.84244 \& -0.103-0.095 \& F: 0.079 \& H: 0.119 \& 0.780 \& FN: 0.349 \& NH: 0.548 \\
\hline \multicolumn{8}{|l|}{FNNCH \({ }^{\text {b }}\)} \\
\hline Cis \& -244.58739 \& 0.036-0.109 \& F: 0.082 \& \[
\begin{aligned}
\& \mathrm{C}:-0.120 \\
\& \mathrm{H}: \quad 0.092
\end{aligned}
\] \& 0.802 \& FN: 0.329 \& \[
\begin{aligned}
\& \mathrm{NC}: 0.571 \\
\& \mathrm{CH}: 0.762
\end{aligned}
\] \\
\hline Trans \& -244.58935 \& 0.019-0.117 \& F: -0.063 \& C: -0.109 \& 0.792 \& FN: 0.340 \& NC: 0.581 \\
\hline \& \& \& \& H: 0.090 \& \& \& CH: 0.763 \\
\hline R' Invts \& -244.51047 \& 0.069-0.212 \& F: -0.122 \& C: -0.042 \& 0.909 \& FN: 0.302 \& NC: 0.677 \\
\hline \& \& \& \& H: 0.103 \& \& \& CH: 0.764 \\
\hline R Invts \& -244.42843 \& -0.115-0.039 \& F: 0.075 \& C: -0.131 \& 0.784 \& FN: 0.348 \& NC: 0.514 \\
\hline \& \& \& \& H: 0.070 \& \& \& CH: 0.760 \\
\hline Cis \& -296.53410 \& \(0.106-0.077\) \& F: -0.035 \& C: 0.142 \& 0.788 \& FN: 0.340 \& N2C: 0.633 \\
\hline \& \& \& \& N3: -0.135 \& \& \& CN3: 1.426 \\
\hline Trans \& -296.53654 \& 0.095-0.089 \& F: -0.023 \& C: 0.159 \& 0.770 \& FN: 0.350 \& N2C: 0.656 \\
\hline \& \& \& \& N3: -0.141 \& \& \& CN3: 1.431 \\
\hline R' Invts \& -296.47343 \& 0.142-0.169 \& F: -0.056 \& \[
\text { C: } 0.227
\] \& 0.886 \& FN: 0.324 \& \[
\text { N2C: } 0.910
\] \\
\hline R Invts \& -296.38328 \& \(-0.0460 .008\) \& F: 0.114 \& \begin{tabular}{l}
N3: -0.144 \\
C: 0.105
\end{tabular} \& 0.794 \& FN: 0.345 \& \[
\begin{aligned}
\& \text { CN3: } 1.351 \\
\& \text { N2C: } 0.524
\end{aligned}
\] \\
\hline \& -296.38328 \& \& \& N3: -0.180 \& \& \& CN3: 1.429 \\
\hline \multicolumn{8}{|l|}{\(\mathrm{HN}=\mathrm{NCH}_{3} \mathrm{~b}\)} \\
\hline Cis \& -147.13386 \& -0.155-0.092 \& H: 0.131 \& \(\begin{array}{lr}\text { C: } \& -0.129 \\ \text { H: } \& 0.082\end{array}\) \& 0.834 \& HN: 0.578 \& \[
\begin{aligned}
\& \mathrm{NC}: 0.565 \\
\& \mathrm{CH}: 0.760
\end{aligned}
\] \\
\hline Trans \& -147.14211 \& -0.178-0.106 \& H: 0.156 \& C: -0.115 \& 0.822 \& HN: 0.598 \& NC: 0.569 \\
\hline \& \& \& \& H: 0.081 \& \& \& CH: 0.762 \\
\hline R' Invts \& -147.04262 \& -0.123-0.214 \& H: 0.099 \& \begin{tabular}{l}
C: -0.046 \\
H: 0.097
\end{tabular} \& 0.877 \& HN: 0.547 \& NC: 0.6 .93 \\
\hline R Invts \& -147.03732 \& -0.295-0.043 \& H: 0.275 \& \(\mathrm{H}: 0\)
\(\mathrm{C}:\)
\(\mathrm{H}: 0.097\)
-0.132 \& 0.898 \& HN: 0.713 \& NC: 0.764 \\
\hline R Inves \& -147.03732 \& \& \& H: 0.065 \& \& \& CH: 0.759 \\
\hline \multicolumn{8}{|l|}{\(\mathrm{HN}=\mathrm{NCN} 3\)} \\
\hline Cis \& -199.08339 \& -0.094-0.058 \& H: 0.180 \& \[
\begin{array}{rr}
\text { C: } \& 0.123 \\
\text { N3: } \& -0.151
\end{array}
\] \& 0.818 \& HN: 0.590 \& \begin{tabular}{l}
N2C: 0.616 \\
CN3: 1.427
\end{tabular} \\
\hline Trans \& -199.09307 \& -0.109-0.077 \& H: 0.195 \& C: 0.148 \& 0.810 \& HN: 0.601 \& N2C: 0.627 \\
\hline \& \& \& \& N3: -0.157 \& \& \& CN3: 1.433 \\
\hline \(\mathrm{R}^{\prime}\) Invts \& -199.01757 \& -0.058-0.158 \& H: 0.167 \& C: 0.209 \& 0.874 \& HN: 0.577 \& N2C: 0.946 \\
\hline R Invts \& -198.99523 \& -0.229 0.005 \& H: 0.313 \& N3:
C:
-
co.
0.101 \& 0.916 \& HN: 0.702 \& \[
\begin{aligned}
\& \text { CN3: } 1.322 \\
\& \text { N2C: } 0.519
\end{aligned}
\] \\
\hline R Invts \& -198.99523 \& -0.229 0.005 \& H. 0.313 \& \[
\text { N3: }-0.190
\] \& \& HN. 0.702 \& CN3: 1.429 \\
\hline \multicolumn{8}{|l|}{} \\
\hline Cis \& -237.67197 \& -0.048-0.078 \& \begin{tabular}{l}
C: -0.126 \\
H: 0.099
\end{tabular} \& \[
\text { C: } 0.120
\] \& 0.817 \& \[
\begin{array}{r}
\text { CN1: } 0.569 \\
\text { HC: } 0.761
\end{array}
\] \& \[
\begin{aligned}
\& \text { N2C: } 0.603 \\
\& \text { CN3: } 1.426
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Trans} \& -237.68075 \& -0.057-0.097 \& C: -0.111 \& C: 0.146 \& 0.804 \& CN1: 0.576 \& N2C: 0.631 \\
\hline \& \& \& H: 0.096 \& N3: -0.169 \& \& HC: 0.762 \& CN3: 1.432 \\
\hline \multirow[t]{2}{*}{R' Invts} \& -237.60598 \& -0.005-0.174 \& C: -0.120 \& C: 0.206 \& 0.874 \& CN1: 0.546 \& \[
\mathrm{N} 2 \mathrm{C}: 0.947
\] \\
\hline \& -237.58966 \& -0.162-0.020 \& H:
C:
-
-0.0048 \& N3:
C:
C 0.0 .173 \& 0.897 \& \(\begin{array}{rr}\text { HC: } \& 0.761 \\ \text { CN1 } 0.668\end{array}\) \& CN3:
N2C: 0.523

ces

\hline R Invts \& -237.58966 \& -0.162-0.020 \& $\mathrm{H}: 0.111$ \& N3: -0.202 \& \& HC: 0.763 \& CN3: 1.428

\hline
\end{tabular}

Table I (Continued)

${ }^{a}$ Invts refers to the estimated transition state for the inversion pathway. The NNR' angle is 180° except for $\mathrm{R}^{\prime}=\mathrm{NO}_{2}$ where it is 170° and the HNNN dihedral angle is $90^{\circ}, b$ Values are averaged over the substituent hydrogens. $c \mathrm{O} 1$ is the cisoid or syn oxygen. O 2 is transoid or anti. ${ }^{d}$ The dihedral angle $\mathrm{H}-\mathrm{N}=\mathrm{N}-\mathrm{NO}_{2}$ optimized to 23°.
the cis isomer than in the trans. The difference usually being about 0.010 .

The optimized bond $\mathrm{N} 1-\mathrm{N} 2$ bond lengths follow the same trend-the bond in the cis isomer usually being about $0.007 \AA$ shorter than in the trans. In general, the N-N-R angles are larger in the cis isomer than in the trans. This phenomenon is probably simply related to the steric repulsion between R and R^{\prime}. The larger angle increases the amount of nitrogen 2 s orbital participation in the $\mathrm{N}-\mathrm{R}$ or $\mathrm{N}-\mathrm{R}^{\prime}$ bond. Another persistent trend is that the diazene nitrogen atoms are more negative in the trans isomers than in the cis.

The cis, trans energy difference, $\Delta E_{\mathrm{t}-\mathrm{c}}=E_{\text {trans }}-E_{\text {cis }}$, is quite constant for the set of substituents H, Me, and CN at -0.009 to -0.012 hartree as shown in Table II. Interestingly $\Delta E_{\mathrm{t}-\mathrm{c}}$ is slightly larger if $\mathrm{R}=\mathrm{R}^{\prime}$ than if $\mathrm{R} \neq \mathrm{R}^{\prime}$. When $\mathrm{R}=\mathrm{F}$ and $\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{Me}$, or CN , the value of $\Delta E_{\mathrm{t}-\mathrm{c}}$ becomes smaller having a value of about -0.002 hartree. Furthermore with $R=R^{\prime}=F$, the cis isomer is preferred to the trans in agreement with experimental data. ${ }^{65}$

We now attempt to investigate why the presence of a fluorine substituent lowers the energy of the cis isomer more than it does the energy of the trans isomer. A priori one might expect that the effect could be due either to the fluorine's lone pairs or to its high electronegativity.

There have been several studies ${ }^{66-78}$ which have focused on the importance of nonbonded interaction involving lone pairs. Epiotis ${ }^{79}$ has discussed "attractive nonbonded interactions" between halogen lone pairs. Similar interactions seem to be important in rationalizing the conformations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{B}_{2} \mathrm{~F}_{4}{ }^{80}$ Hoffmann ${ }^{81}$ has used related ideas in discussing "steric attractions" for highly exothermic reactions.

Radom, Hehre, and Pople ${ }^{76}$ have examined the rotational potential of HOOF. Although the optimal HOOF dihedral

Table II. Energy Difference between the Cis and Trans Isomers of RNNR' Expressed in Hartrees ${ }^{a}$

	R			
R^{\prime}	H	CH_{3}	CN	F
H	-0.01171	-0.00825	-0.00968	-0.00167
CH_{3}		-0.1085	-0.00878	-0.00196
CN^{2}			-0.1059	-0.00244
F				+0.00013

${ }^{a}$ Note: 1 hartree $=627.7 \mathrm{kcal} / \mathrm{mol}$. The values reported were obtained from geometry optimized STO-3G calculations.
angle is found to be 75°, the cis planar structure is found to be of lower energy than the trans. The authors interpret this as being "consistent with the dipole interactions". In $\mathrm{N}_{2} \mathrm{~F}_{2}$, however, such interactions should favor the trans form as opposed to the cis which is of lower energy, experimentally, ${ }^{65}$ and in our calculations as well.

Wolfe ${ }^{77}$ has discussed the interactions between lone pairs, e, and substituents, X. Examining the diazene system, we see that, in the cis isomer (1), there is a lone-pair/lonepair interaction, e / e, and a substituent-bond/substituentbond interaction, X / X. On the other hand, in trans form (2),

1

2

Figure 1. Variation in the STO-3G, valence shell molecular orbital energies of $\mathrm{N}_{2} \mathrm{H}_{2}$ with changes in the nuclear charges. As Z_{H} is increased, Z_{N} is simultaneously decreased. Dashed lines represent the trans isomer orbital energies and solid lines those of the cis isomer.
there are two lone pair/bond interactions, e / X. If these interactions were to be dominant, then the condition for the cis isomer having a lower energy would be given by eq 1 .

$$
\begin{equation*}
(e / e+X / X)-2(e / X)<0 \tag{1}
\end{equation*}
$$

Wolfe ${ }^{77}$ arrived at the same expression during investigations of the gauche effect.

Before attempting to evaluate the applicability of the various interpretative schemes, it is useful to investigate the dependence of $\Delta E_{\mathrm{t}-\mathrm{c}}$ upon the electronegativity of the substituents. Toward this end we have performed calculations on the model compound $\mathrm{N}_{2} \mathrm{H}_{2}$ modifying the nuclear charges so as to mimic electronegativity effects. ${ }^{82}$ The procedure was to use an STO-3G basis set and add a fractional charge to the hydrogen nuclear charge (Z_{H}) while subtracting the same amount from the nitrogen nuclear charge. When the charge on the hydrogen nuclei was increased, the cis-trans energy gap decreased, finally favoring the cis form when the "hydrogen" nuclear charge $\left(Z_{H}\right)$ was about 1.5 and that of the "nitrogens" was 6.5 .

Figure 1 shows a plot of the orbital energies for the cis form (solid lines) and the trans form (dashed lines) as a function of Z_{H}, the hydrogen nuclear charge. The overall
behavior is qualitatively understood in terms of the charge distribution within each molecular orbital. The lowest lying molecular orbtals, $2 \mathrm{a}_{1}$ for trans and $2 \mathrm{a}_{\mathrm{g}}$ for the cis isomer, are predominantly $\mathrm{N}-\mathrm{N} \sigma$ bonding and thus rise in energy as Z_{N} decreases.

The next two sets of molecular orbitals are the antisymmetric and the symmetric combination of the $\mathrm{N}-\mathrm{H} \sigma$ bonds. Due to the substantial density on the hydrogens, an increase in Z_{H} causes a decrease in the molecular orbital energies. The highest ($4 \mathrm{a}_{\mathrm{g}}$ and $3 \mathrm{~b}_{2}$) and the third from the highest ($4 a_{1}$ and $3 b_{u}$) occupied orbitals are nitrogen lone pairs and consequently go up in energy. The orbital set which is second from the top ($1 a_{u}$ and $1 b_{2}$) are the π orbitals located entirely on the nitrogens and consequently rise in energy.

Probably the most reliable information may be obtained by comparing the slopes of the curves at $Z_{\mathrm{H}}=1.0$. If the slope of the trans isomer is larger (more positive) than that of the cis isomer, then we assume that a preference for the cis form is introduced. The largest difference in the slopes is found in the set of highest occupied orbitals where the energy of the orbital of the trans isomer rises substantially faster than that of the cis. The coefficient of the hydrogen is atomic orbital in the cis molecular orbital is substantially greater (0.368) than that in the trans $3 \mathrm{~b}_{2}$ orbital (0.286). Additionally, as shown in Table I, the substituents in the cis isomer are more negative than in the trans. As the substituents are made more electronegative, the difference in charges on the substituents becomes more important, and the cis isomer is lower in energy than the trans.

As had been noted before, ${ }^{83}$ the ordering of the symme-try-adapted diazene lone pair combinations is reversed in the cis and trans isomers. In the cis isomer, the plus combination, orbital $4 a_{1}$, is of lower energy than the minus combination, $3 \mathrm{~b}_{2}$. In the trans isomer, the minus combination, orbital $3 \mathrm{~b}_{\mathrm{u}}$, is of lower energy than the plus combination, $4 \mathrm{a}_{\mathrm{g}}$.

The results of these numerical experiments can be interpreted in different ways. We would expect that donation of the nitrogen lone pairs into the adjacent $\mathrm{N}-\mathrm{R} \sigma^{*}$ orbital (hyperconjugation) would increase as the electronegativity of the R group is increased. If the donation is greater for the cis isomer than for trans and the difference increases as the electronegativity of the substituents increases, a rationale would be provided for the lower energy of cis $\mathrm{N}_{2} \mathrm{~F}_{2}$. In fact, examining the $\mathrm{N}-\mathrm{N} \pi^{\prime}$ overlap population (in the molecular plane but perpendicular to the internuclear axis) provides some support for this interpretation. Using a single geometry that represents an average of the optimized cis and trans $\mathrm{N}_{2} \mathrm{H}_{2}$ structures, the $\mathrm{N}-\mathrm{N} \pi^{\prime}$ overlap population with $Z_{\mathrm{H}}=1.0$ is -0.015 for the cis and -0.019 for the trans with a difference of 0.004 . When Z_{H} is 1.2 the π^{\prime} overlap populations become 0.020 for the cis and 0.008 for the trans with a difference of 0.012 . Clearly hyperconjugative donation is present and the larger difference with the more electronegative substituents could argue in favor of such donation controlling the isomer stability. However, if we examine the total $\mathrm{N}-\mathrm{N}$ overlap populations, we find that the difference between the cis and trans overlap population forms does not change substantially with Z_{H}. The total $\mathrm{N}-\mathrm{N}$ overlap population ($Z_{\mathrm{H}}=1.0$) is 0.826 for the cis isomer and 0.838 for the trans giving a difference of 0.012 . When Z_{H} is 1.2 , the cis value is 0.929 and the trans yields 0.943 for a difference of 0.014 . The change in the cistrans difference is now quite small.

Furthermore, in examining the total $\mathrm{N}-\mathrm{N}$ overlap populations of Table I, we find that the cis isomer consistently has a greater value than the trans. As before, this might suggest that hyperconjugation could be dominant. However, there is very little change in the difference of the cis and trans $\mathrm{N}-\mathrm{N}$ overlap population for the various mole-
cules. The differences in the total $\mathrm{N}-\mathrm{N}$ overlap populations for several molecules are: FNNF, 0.010 ; HNNH, 0.006 ; $\mathrm{CH}_{3} \mathrm{NNCH}_{3}, 0.004 ;$ NCNNCN, 0.010; FNNH, 0.018 ; $\mathrm{FNNCH}_{3}, 0.010 ;$ FNNCN, $0.018 ; \mathrm{HNNCH}_{3}, 0.012$; HNNCN, $0.008 ; \mathrm{CH}_{3} \mathrm{NNCN}, 0.013$. Although some of the fluorinated molecules show a larger $\mathrm{N}-\mathrm{N}$ overlap population, we do not detect a clear correlation between the cistrans energy difference and the total $\mathrm{N}-\mathrm{N}$ overlap population. Consequently, we are hesitant to accept the idea of N1 (lone pair) $\rightarrow \mathrm{N} 2-\mathrm{R}^{\prime}\left(\sigma^{*}\right)$ donation as being the sole dominant factor in controlling the isomer stability. Rather, we prefer to ascribe a parallel role to electronegativity effects: fluorines prefer sites of high charge density (cis geometries). However, the origin of the higher charge density on the substituents in the cis isomer may well lie in hyperconjugative effects.

Let us put forth, however, another interpretation of these results, suggested, in part, to us by Professor M. J. S. Dewar of The University of Texas at Austin. As has been noted, the hyperconjugative interaction of the nitrogen lone pairs with the adjacent σ^{*} functions appears to be greater in the cis geometry than in the trans. This is evidenced by the greater total and in-plane π-type \mathbf{N} - \mathbf{N} overlap population. If we accept this as introducing a general preference for the cis isomer, then we are left with explaining the lower energy of the trans forms for substituents other than F. It is well known ${ }^{84}$ that the hybridization of the lone pair in NX_{3} compounds changes as a function of electronegativity of the X substituent, becoming higher in s character as the X electronegativity increases. Now consider the electrostatic repulsion of the lone pairs in $\mathrm{N}_{2} \mathrm{X}_{2}$. It should be greater in the cis geometry than in the trans, and the difference between the repulsions in the cis and trans forms should decrease as the electronegativity of X increases and the lone pairs became more s-like losing their directionality. Thus in $\mathrm{N}_{2} \mathrm{H}_{2}$ the electrostatic repulsion would dominate favoring the trans isomer whereas in $\mathrm{N}_{2} \mathrm{~F}_{2}$ the hyperconjugative effect prevails making the cis of lower energy.

Mechanism of Cis-Trans Isomerization. There have been two pathways considered for the isomerization process: rotation and inversion (Scheme I). We have investigated
Scheme I

the alternatives for the set of substituents, $\mathrm{H}, \mathrm{F}, \mathrm{Me}, \mathrm{CN}$, $\mathrm{NH}_{2}, \mathrm{NO}_{2}$, and CHO . For all cases investigated, the inversion mechanism, $\mathbf{1 \rightarrow 3 \rightarrow 2}$, was of lower energy. Even small deviations from a planar transition state were found to be of higher energy. The sole exception was HNNNO_{2} where a deviation of about 10° from planarity was calculated. Figure 2 shows the potential surface for the $\mathrm{N}_{2} \mathrm{H}_{2}$ isomerization. The NNH angle is demarcated along the radial lines while the HNNH dihedral angle is varied circumferentially. The low energy path lies along the diameter connecting the cis and trans isomers. The higher energy rotational path involves sweeping out a curved line over the po-

Figure 2. A two-dimensional STO-3G potential surface for the cistrans isomerization of $\mathrm{N}_{2} \mathrm{H}_{2}$. The $\mathrm{N}-\mathrm{N}-\mathrm{H}$ angle for the hydrogen undergoing motion is demarcated radially and the $\mathrm{H}-\mathrm{N}-\mathrm{N}-\mathrm{H}$ angle circumferentially. C and T refer to the equilibrium geometries of the cis and trans isomers. Energies are given in kcal/mol relative to the trans isomer.
tential surface. Inasmuch as the pure rotation isomerization of $\mathrm{N}_{2} \mathrm{H}_{2}$ is symmetry forbidden, ${ }^{23,37,39}$ it might be thought that a configuration interaction treatment would be necessary to accurately compare the inversion and rotation pathways. However, Winter and Pitzer ${ }^{39}$ have recently shown that a multiconfiguration self-consistent field treatment lowers the rotational transition-state energy by only 6.5 $\mathrm{kcal} / \mathrm{mol}$, relative to the Hartree-Fock treatment.

It is interesting to compare the energy required to reach the inversion transition state where the NNR^{\prime} angle is 180°. The following ordering was obtained (with the energies given in $\mathrm{kcal} / \mathrm{mol}$ relative to the trans isomer) for the diazenes with $R=R^{\prime}$

$$
\begin{equation*}
\mathrm{F}(83.7)>\mathrm{H}(66.4)>\mathrm{CH}_{3}(61.6)>\mathrm{CN}(45.6) \tag{2}
\end{equation*}
$$

This ordering is easily rationalized in terms of the π-like interactions that occur in the transition state. At the inversion transition state, the lone pair on the inverting nitrogen has been transformed into a nearly pure p orbital. It will naturally be of high energy and is an excellent π-electron donor into low lying, vacant π^{*} orbitals of the R^{\prime} substituent (see structure 5).

Fluorine, a π donor itself, thus has a higher activation energy than the purely σ-bonding hydrogen. The methyl group is capable of some hyperconjugation ${ }^{85-97}$ with the lone pair but is not as good a π acceptor as the cyano group with its low lying, vacant π^{*} orbitals. The geometric changes that occur in some of the molecules at the transition state are discussed below.

There exists the intriguing opportunity to investigate, at least theoretically, the possibility of competing modes of isomerization. Given a diazene with two unlike substituents

Table III. Energy of Different Inversion Transition States ($\mathrm{kcal} / \mathrm{mol}$) Relative to the Trans Isomer ${ }^{a}$

	R^{\prime}			
R	F	H	CH_{3}	CN
F	83.7	53.6	49.5	39.6
H	101.7	66.4	62.4	46.9
CH_{3}	101.0	65.8	61.7	47.4
CN^{3}	96.2	61.4	57.2	45.6

${ }^{a}$ The NNR' angle is assumed to be 180° at the transition state. Geometries were optimized in the STO-3G calculations. R is the noninverting substituent and R^{\prime} the inverting substituent.
R and R^{\prime}, we ask which will undergo the inversion. We have carried out calculations considering the two possible transition states for each pairing of substituents from the set F, $\mathrm{H}, \mathrm{Me}, \mathrm{CN}$. In each case it was, not surprisingly, the better π acceptor which underwent the inversion in the lower energy transition state. Again, it was found that, at least for excursions of up to 30° from linearity, the inversion mechanism was of lower energy than the rotational. Our results are summarized in Table III.

If R, the noninverting group, is held constant and R^{\prime} is varied, the energy of the transition state ($E\left(\mathrm{R}, \mathrm{R}^{\prime}\right)$) varies in the same overall fashion as for the $R=R^{\prime}$ series (eq 2).

On the other hand, suppose R^{\prime}, the inverting substituent, is held constant and R varied. For a given choice of R , we find that, when R is H or CH_{3}, the transition-state energy is higher than when R is F or CN . This follows simply from the total charges on the nitrogens within the diazene group. In the transition state, the inverting nitrogen changes its hybridization to sp thus becoming more electronegative and acquiring a sizable negative charge as shown in Table I. If the R substituent is such that a negative charge resides on the adjacent, noninverting nitrogen, there may be substantial repulsion and a higher activation energy than would otherwise be the case. Examining Table I, a noninverting H or CH_{3} allows buildup of charge on N1. Conversely, if the noninverting substituent R is such as to remove chargeeither inductively as with F or with the aid of vacant π accepting orbitals as for CN -there should be (and in our calculations is) a noticeable stabilization of the transition state.

The highest occupied molecular orbital is dominated by the lone pair p character of the inverting nitrogen. For a given inverting group, R^{\prime} (columns in Table III), the HOMO is about $35 \mathrm{kcal} / \mathrm{mol}$ higher when R is H or CH_{3} than when R is F or CN . The low activation energy of imino carbonates which have electronegative noninverting $\mathrm{CH}_{3} \mathrm{O}$ groups has been interpreted ${ }^{45}$ as indicating a polar transition state in which unsharing of the electrons participating in the double bond has taken place facilitating a rotational motion. These arguments might suggest that FNNH, with H inverting, should have a reduced preference for inversion relative to HNNH. However, our calculations show nearly exactly the same preference for the inversion pathway.

Given the importance of the lone-pair-substituent donation in determining the energetics of the isomerization, it was clear that the possibility existed for an inversion mechanism which involved not only an inverting of the $\mathrm{N}-\mathrm{N}-\mathrm{R}^{\prime}$ bond but also a rotation about the NR^{\prime} bond axis as the transition state is approached. Both the $-\mathrm{NO}_{2}$ and -CHO substituents have low lying vacant π^{*} orbitals and may function as π acceptors. Furthermore, they are single vector systems in that their single π system lies perpendicular to the plane of the substituent atoms. Of course, both - CN and -F possess two orthogonal π systems and we thus term them double vector.

We calculated the energies of the cis and trans isomers for R^{\prime} being NO_{2} or CHO and found the energies to be lower when the π system of the substituent was in conjugation with the diazene double bond than when they were perpendicular to each other. We then calculated the various possible inversion transition states. In both cases a rotation, such as 6 to 7 , was involved around the $\mathrm{N}-\mathrm{NO}_{2}$ or $\mathrm{N}-\mathrm{CHO}$

bonds so that the π vector of the substituent was aligned with the lone pair p orbital of the inverting nitrogen. The energy difference between the perpendicular transition state 7 and the corresponding planar ones was significant. For inversion with $-\mathrm{NO}_{2}$, it was $14.2 \mathrm{kcal} / \mathrm{mol}$, and for -CHO it was $17.2 \mathrm{kcal} / \mathrm{mol}$ relative to the better of the two possible planar transition states. For comparison purposes, the possible orientations for the transition states of a singly vectored π donor, NH_{2}, were also explored. As expected, the reverse situation obtained. The lowest energy transition state was calculated to be with the π vector of the substituent in conjugation with the double bond of the diazene and perpendicular to the p-orbital lone pair of the inverting nitrogen. The geometry changes, detailed below, that occurred in the transition state provide further insight into the interpretation outlined above. Experimental studies on the methylenimine system ${ }^{49}$ have suggested the presence of a rotation of the inverting group as the transition state is approached for single vector π acceptor.

Recently Levin ${ }^{84}$ has elegantly discussed the effect of electronegativity on AH_{3} molecule inversion barriers. Although allowing that π effects probably outweigh electronegativity effects, he finds that electronegative substituents lower the inversion barrier. As alluded to above, increasing the electronegativity of the substituents should stabilize the lone pair of the central atom, in pyramidal geometries, by increasing its s character. Thus it will cost more energy to reach the inversion transition state where the lone pair is a pure p orbital.

The $\mathrm{HN}=\mathrm{N}-\mathrm{NH}_{2}$ system provides a model system where we may attenuate the repulsive π interaction through rotation about the $\mathrm{N}-\mathrm{N}$ bond. If the amino lone pair is restricted to the heavy-atom plane, the inversion motion costs either 82.6 or $86.1 \mathrm{kcal} / \mathrm{mol}$ depending on orientation of the lone pair to reach the transition state from the trans geometry.

On the other hand, if the amino lone pair is allowed to assume its optimum orientation, approximately perpendicular to the heavy atom plane, the cost of reaching the transition state is reduced to $74.7 \mathrm{kcal} / \mathrm{mol}$. As Table III shows, this is only some $8.3 \mathrm{kcal} / \mathrm{mol}$ larger than the corresponding figure for $\mathrm{H}-\mathrm{N}=\mathrm{N}-\mathrm{H}$. In a rough way these data suggest that the π-like repulsion is probably more important than electronegativity effects for the amino substituent.
$\mathbf{H}-\mathbf{N N}-\mathrm{H}$. A potential surface for the cis-trans isomerization of $\mathrm{N}_{2} \mathrm{H}_{2}$ is provided in Figure 2. The optimized geometries for cis, inverion transition state, and trans forms are shown in $\mathbf{8 , 9}$, and $\mathbf{1 0}$. The corresponding relative energies are $7.4,66.5$ and $0.0 \mathrm{kcal} / \mathrm{mol}$. The shortening of the $\mathrm{N}=\mathrm{N}$ and inverting $\mathrm{N}-\mathrm{H}$ bond at the transition state, 9, is easily attributed to the formal change in the hybridization from sp^{2} to sp of the inverting nitrogen. The same trend is observed in extended basis set calculations. ${ }^{98}$ The changes

in the optimized geometries are also reflected in the Mulliken population analysis contained in Table I. The $\mathrm{N} 1=\mathrm{N} 2$ overlap population is greater in the cis form than the trans while the $\mathrm{N}-\mathrm{H}$ overlap population is lower for cis corresponding to the changes in the optimized bond lengths. At the transition state, the $\mathrm{N}-\mathrm{H}$ overlap population in the bond undergoing inversion is 0.712 (of which 0.342 is due to $\mathrm{N}(2 \mathrm{~s})-\mathrm{H}(1 \mathrm{~s})$ overlap) compared with 0.587 (0.015) for the cis and 0.595 (0.022) for the trans. The hydrogen attached to the inverting nitrogen has become substantially more positive (0.279) probably because of the higher electron attracting ability of the (formal) nitrogen sp hybrid used in the bond. ${ }^{99}$ The dipole moment is 2.4 in the transition state relative to 2.9 in the cis form. (That of the trans form is, of course, zero.)
$\mathrm{CH}_{3}-\mathrm{NN}-\mathrm{CH}_{3}$. We expect that the methyl group will behave nearly the same as the hydrogen substituent. There should, however, be minor perturbations due to the relative electronegativities and the hyperconjugating ability of the methyl group. ${ }^{86-97}$ The optimized geometries (subject to the constraint that $\mathrm{C}-\mathrm{H}=1.09 \AA$ and $\angle \mathrm{HCH}=109.47^{\circ}$) are shown in structures 11, 12, and 13 and have relative

11

12

mers to the extent that either $\mathrm{N}-\mathrm{H}$ or $\mathrm{N}-\mathrm{Me}$ bonds did. Presumably, this is due to the net antibonding interaction between the fluorine lone pair and the p-type lone pair of the nitrogen undergoing inversion. The $2 \mathrm{p}_{x} \mathrm{~N}-2 \mathrm{p}_{x} \mathrm{~F}$ (in the plane of the transition state) overlap population at the inverting center is -0.3757 while the $2 \mathrm{p}_{y} \mathrm{~N}-2 \mathrm{p}_{y} \mathrm{~F}$ (π system, perpendicular to the nuclear plane) is 0.2487 .

The dipole moment of the transition state, 15 , was 1.7 as compared with 0.9 for the cis isomer, 14. The isomerization activation energy has been experimentally estimated at 32 kcal/mol. ${ }^{65 b}$

NC-NN-CN. This molecule has been tentatively observed by Marsh and Hermes ${ }^{104}$ and ab initio calculations have been performed ${ }^{105}$ favoring the trans isomer by 20 $\mathrm{kcal} / \mathrm{mol}$. The -CN groups each possess two low lying π^{*} orbitals which may accept π-electron density from the $\mathrm{N}=\mathrm{N}$ system and the lone pair functions. The geometry optimized molecules are shown in 17-19, which have rela-

tive energies of $6.6,45.6$, and $0.0 \mathrm{kcal} / \mathrm{mol}$. Several results of the donation of charge into the $\mathrm{CN} \pi^{*}$ orbitals, 20 , at the

20
transition state may be discerned. First is the lengthening of the CN bond length within the inverting CN group by about $0.018 \AA$ relative to either the cis or trans optimized structures. The bond weakening is also obvious in the overlap populations reported in Table I where there is a pronounced drop in the $\mathrm{C}-\mathrm{N}$ overlap population for the inverting group. There is an increase in the number of electrons associated with the inverting nitrogen at the transition-state geometry as indicated by the data of Table I. For most molecules it is an increase of about 0.11 electron. However, when -CN is the part of the inverting center, the increase in negative charge is only about 0.08 electron. Presumably, this is attributable to the back donation into the $\mathrm{CN} \pi^{*}$ orbitals. The shortening of the inverting N-C bond is about $0.139 \AA$, substantially greater than that for an inverting hydrogen or methyl group.
$\mathbf{R} \neq \mathbf{R}^{\prime}$. Most of the geometric effects described for the $R=R^{\prime}$ cases above are also discernible when $R \neq R^{\prime}$. The optimized NNR or NNR' bond angles are smaller in the trans isomer than in the cis. The importance of electron accepting in the inverting R^{\prime} substituent is demonstrable, for instance, in the changes in the inverting CN bond length of the $\mathrm{R}^{\prime}=\mathrm{CN}$ group. On the average, it increases by $0.016 \AA$ in going from the trans isomer to the transition state where $\mathrm{R}^{\prime}=\mathrm{CN}$.

There are a number of effects which arise from the interaction of the two substituents. One such effect has been discussed above for calculations on the cis-trans activation energy. Another related effect is shown in Table IV which displays the optimized $\mathrm{N}=\mathrm{N}$ bond length in the trans isomer as a function of R and R^{\prime} substituents. Examining the diag-

Table IV. Optimized $\mathrm{N}=\mathrm{N}$ Bond Lengths for the Trans Isomer of the Indicated $\mathrm{RN}_{2} \mathrm{R}^{\prime}$ Molecules

	F	Trans $\mathrm{N}=\mathrm{N}$ bond length		
F	1.282	H	CH_{3}	CN
H	1.270	1.267	1.270	1.284
CH_{3}	1.270	1.268	1.268	1.279
CN	1.284	1.279	1.268	1.279

onal it is seen that the changes roughly parallel the Mulliken overlap populations reported in Table I. The F and CN substituents which function as electron withdrawers, relative to H or CH_{3}, increases the $\mathrm{N}=\mathrm{N}$ bond length and decrease the corresponding Mulliken overlap population. The off-diagonal cases where $R \neq R^{\prime}$ show situations intermediate between the $\mathrm{RN}_{2} \mathrm{R}$ and $\mathrm{R}^{\prime} \mathrm{N}_{2} \mathrm{R}^{\prime}$ molecules.
$\mathbf{R}^{\prime}=\mathbf{N O}_{\mathbf{2}}, \mathbf{C H O}, \mathbf{N H}_{2}$. These substituents attached to the inverting nitrogen are single vector π systems. We may again examine the importance of interaction in the transition state through the optimized bond lengths of the various inversion transition states.
Structures 21 and 22 are related by a 90° rotation about the $\mathrm{N}_{2} \mathrm{~N}_{3}$ bond. 21, which is about $14 \mathrm{kcal} / \mathrm{mol}$ lower in energy than 22, has a shorter optimized N2-N3 bond length

21

and longer $\mathrm{N}-\mathrm{O}$ distances than 22, agreeable with the concept of donation into the vacant π^{*} orbital of the NO_{2} group.

The same phenomenon is observed when R^{\prime} is -CHO . The low energy inversion transition state is 23 with the carbonyl π^{*} orbital in conjugation with the inverting nitrogens p-type lone pair. 24 is higher in energy by $17.2 \mathrm{kcal} / \mathrm{mol}$ and has a longer NC and shorter CO bond lengths.

The $\mathrm{C}-\mathrm{H} \sigma$ bond length behaves in the converse fashion, longer in 24 and shorter in 23.

When R^{\prime} is NH_{2}, the favored pure inversion transition state is 25 which minimizes interaction between the adjacent lone pairs. A comparison of the optimized structures provides additional insights.

In 25, the inverting lone pair is eclipsing the lone pair of the amino group. In order to minimize the repulsive interactions, the amino group has become quite pyramidal relative to 26 where there is conjugation between the double bond

25

26
and the NH_{2} lone pair. The $\mathrm{N}-\mathrm{NH}_{2}$ bond length in $\mathbf{2 5}$ is longer than in 26 partially due to minimizing the repulsive interaction and partially to the rehybridization of the amino nitrogen.

Acknowledgment. We are grateful for a generous grant of computer time from the Central Computer Facility of the City University of New York. This work was supported by a Faculty Research Award to J.M.H. We are grateful to Professor Paul Haberfield of Brooklyn College (CUNY) and Professor N. D. Epiotis of the University of Washington for valuable discussions.

References and Notes

(1) For a review of substituted ammonias, see S. J. Brois, Trans. N.Y. Acad. Sci., [2], 31, 931 (1969).
(2) J. M. Lehn and B. Munsch, Chem. Commun., 1062 (1970); see aiso, M. J. S. Dewar and M. Shanshai, J. Am. Chem. Soc., 91, 3654 (1969).
(3) S. K. Brauman and M. E. Hiii, J. Chem. Soc., B, 1091 (1969),
(4) W. H. Fietcher and F. B. Brown, J. Chem. Phys., 39, 2478 (1963).
(5) J. D. Andose, J.-M. Lehn, K. Misiow, and J. Wagner, J. Am. Chem. Soc., 92, 4050 (1970); see aiso F. A. L. Anet and J. M. Osyany, Ibid., 89, 352 (1967); S. J. Brois, lbid., 90, 508 (1968).
(6) R. C. Lord and C. H. Sederhoim, Spectrochim. Acta, 15, 605 (1959).
(7) D. E. Mililigan and M. E. Jacox, J. Chem. Phys., 41, 2838 (1964).
(8) (a) E. D. Becker, G. C. Pimentel, and M. Van Thiei, J. Chem. Phys., 26, 145 (1957); (b) K. Rosengren and G. C. Pimentei, lbid., 43, 507 (1965); (c) M. Van Thiei and G. C. Pimentei, Ibid., 32, 133 (1960).
(9) D. A. Dows, G. C. Pimentei, and E. Whittie, J. Chem. Phys., 23, 1606 (1955).
(10) (a) E. J. Blau, B. F. Hochheimer, and H. J. Unger, J. Chem. Phys., 34, 1060 (1961); (b) E. J. Biau and B. F. Hochheimer, ibid., 41, 1174 (1964).
(11) A. Trombetti, Can. J. Phys., 46, 1005 (1968); J. Chem. Soc. A, 1086 (1971).
(12) V. E. Bondybey and J. W. Nibier, J. Chem. Phys., 58, 2125 (1973); J. W. Nibier and V. E. Bondybey, Ibid., 60, 1307 (1974).
(13) (a) S. N. Foner and R. L. Hudson, J. Chem. Phys., 28, 719 (1958); (b) Adv. Chem. Ser., 36, 34 (1962).
(14) A. N. Terenin, B. L. Kurbatov, and F. I. Vilesov, Tr. Khlm. Khim. Tekhnol., 4, 181 (1961).
(15) K. H. Homann, D. i. MacLean, and H. Gg. Wagner, Naturwissenschaften, 52, 12 (1965).
(16) i. G. Murguiescu and Z. Simon, Rev. Roum. Chim., 11, 21 (1966).
(17) E. R. Talaty and J. C. Farbo, Chem. Commun., 65 (1967).
(18) C. Wiliis and R. A. Back, Can. J. Chem., 51, 3605 (1973).
(19) A. Aimenningen, i. M. Anfinsen, and A. Haaiand, Acta Chem. Scand., 24, 1230 (1970).
(20) For reactions of $\mathrm{N}_{2} \mathrm{H}_{2}$ as a hydrogenating agent, see S. Hunig, H. Muller, and W. Thier, Tetrahedron Lett., 11, 353 (1961); E. J. Corey, D. J. Pasto, and W. L. Mock, J. Am. Chem. Soc., 83, 2957 (1961); C. E. Miiler, J. Chem. Educ., 42, 254 (1965).
(21) For aromatic substituents, see G. S. Hartiey, J. Chem. Soc., 633 (1938); R. J. W. Le Fevre and J. Northcott, ibid., 867 (1953); P. D. Wiides, J. G. Pacifici, G. irick, and D. G. Whitten, J. Am. Chem. Soc., 93, 2004 (1971); P. Haberfieid, P. M. Biock, and M. S. Lux, lbid., submitted for pubiication; A. Hantzsh and W. Schuize, Chem. Ber., 28, 666 (1895); R. J. W. Le Fevre and H. Vine, J. Chem. Soc., 431 (1938); R. J. W. Le Fevre and J. Northcott, Ibid., 944 (1949); (c) S.-B. Rhee and H. H. Jaffe, J. Am. Chem. Soc., 95,5518 (1973).
(22) A. D. Waish, J. Chem. Soc., 2260 (1953).
(23) B. M. Gimarc, J. Am. Chem. Soc., 92, 266 (1970); Acc. Chem. Res., 7, 384 (1974).
(24) G. W. Wheiand and P. S. K. Chen, J. Chem. Phys., 24, 67 (1956).
(25) J. Aister and L. A. Burneile, J. Am. Chem. Soc., 89, 1261 (1967).
(26) M. S. Gordon and H. Fischer, J. Am. Chem. Soc., 90, 2471 (1968); see aiso M. S. Gordon and J. A. Popie, J. Chem. Phys., 49, 4643 (1968).
(27) Ts. A. Eiges, B. A. Porai-Koshits, and V. I. Minkin, Zh. Org. Khim., 4, 322, 494 (1968).
(28) J. M. Lehn and B. Munsch, Theor. Chim. Acta, 12, 91 (1968).
(29) L. J. Schaad and H. B. Kinser, J. Phys. Chem., 73, 1901 (1969); H. B. Kinser, Ph.D. Thesis, Vanderbilt University, Nashviiie, Tenn., 1967.
(30) D. W. Genson and R. E. Christoffersen, J. Am. Chem. Soc., 94, 6904 (1972).
(31) B. Cadioil, P. Patella, U. Pinceilii, and D. J. David, Atti. Soc. Nat. Mat. Modena, 100, 47 (1969).
(32) D. P. Wong, W. H. Fink, and L. C. Alien, J. Chem. Phys., 52, 6291 (1970).
(33) H. Yamabe, H. Kato, and T. Yonezawa, Bull. Chem. Soc. Jpn., 44, 22 (1971).
(34) L. Radom, W. J. Hehre, and J. A. Popie, J. Am. Chem. Soc., 93, 289 (1971).
(35) (a) M. B. Robin, R. B. Hart, and N. A. Kuebier, J. Am. Chem. Soc., 89, 1564 (1967); (b) C. R. Brundie, M. B. Robin, N. A. Kuebier, and H. Basch, ibid., 94, 1451 (1972).
(36) R. Ditchfield, J. E. Dei Bene, and J. A. Popie, J. Am. Chem. Soc., 94, 703 (1972).
(37) N. C. Baird and J. R. Swenson, Can J. Chem., 51, 3097 (1973).
(38) G. Wagniere, Theor. Chim. Acta, 31, 269 (1973); see G. Herzberg, Kagaku To Kogyo (Tokyo), 21, 474 (1968).
(39) N. W. Winter and R. M. Pitzer, J. Chem. Phys., 62, 1269 (1975).
(40) D. R. Johnson and F. J. Lovas, Chem. Phys. Lett., 15, 65 (1972).
(41) (a) D. Y. Curtin and J. W. Hausser. J. Am. Chem. S̄oc., 83, 3474 (1961); (b) D. Y. Curtin, E. J. Grubbs, and C. G. McCarty, ibid., 88, 2775 (1966).
(42) A. Rieker and H. Kessier, Z. Naturforsch. B, 21, 239 (1966); Tetrahe-
dron, 23, 3723 (1967); H. Kessler, Angew. Chem., int. Ed. Engl., 6, 977 (1967); 7, 898 (1968); Tetrahedron Lett., 2041 (1968); H. Kessier and D. Leibfritz, Tetrahedron, 25, 5127 (1969); Tetrahedron Lett., 427 (1969); H. Kessier, Angew. Chem., 82, 237 (1970); Angew. Chem., int. Ed. Engl., 9, 219 (1970); H. Kessier and D. Leibfritz, Tetrahedron Lett., 1423 (1970).
(43) E. A. Jeffery, A. Meisters, and T. Moie, Tetrahedron, 25, 741 (1969).
(44) C. G. McCarty and D. M. Wieland, Tetrahedron Lett., 1787 (1969).
(45) (a) H. A. Staab, F. Vogtle, and A. Mannschreck, Tetrahedron Lett., 697 (1965); (b) D. Wurmb-Gerlich, F. Vogtle, A. Mannschreck, and H. A. Staab, Justus Llebigs Ann. Chem., 708, 36 (1967); (c) F. Vogtle, A. Mannschreck, and H. A. Staab, Ibld., 708, 51 (1967).
(46) N. P. Maruilo and E. H. Wagener, J. Am. Chem. Soc., 88, 5034, (1966); Tetrahedron Lett., 2555 (1969).
(47) G. Wettermark and E. Wailstrom, Acta Chem. Scand., 22, 675 (1968).
(48) R. W. Layer and C. J. Carman, Tetrahedron Lett., 1285 (1968).
(49) A. Liden and J. Sandström, Tetrahedron, 27, 2893 (1971).
(50) (a) E. Carison, F. B. Jones, Jr., and M. Raban, Chem. Commun., 1235 (1969); (b) M. Raban, G. W. J. Kenney, Jr., and F. B. Jones, Jr., J. Am. Chem. Soc., 91, 6677 (1969); (c) M. Raban and G. W. J. Kenney, Jr., Tetrahedron Lett., 1295 (1969); (d) M. Raban and E. Carison, J. Am. Chem. Soc., 93, 685 (1971).
(51) (a) R. D. Brown and A. Penfold, J. Chem. Phys., 24, 1259 (1956); (b) Trans. Faraday Soc., 53, 397 (1957).
(52) J. B. Moffat, Can. J. Chem., 48, 1820 (1970).
(53) (a) J. M. Lehn, B. Munsch, and Ph. Milile, Theor. Chim. Acta, 16, 351 (1970); (b) B. Levy, Ph. Milile, J. M. Lehn, and B. Munsch, lbid., 18, 143 (1970); (c) J. Vinh, B. Levy, and Ph. Miliie, Mol. Phys., 21, 345 (1971).
(54) R. Macaulay, L. A. Burneile, and C. Sandorfy, Theor. Chim. Acta, 29, 1 (1973).
(55) F. A. L. Anet, J. C. Jochims, and C. H. Bradiey, J. Am. Chem. Soc., 92, 2557 (1970).
(56) D. R. Wiiliams and R. Damrauer, Theor. Chim. Acta, 23, 195 (1971).
(57) For related probiems, see ref 58-62.
(58) (a) A. H. Cowley, M. J. S. Dewar, and W. R. Jackson, J. Am. Chem. Soc., 90, 4185 (1968); (b) M. J. S. Dewar and W. B. Jennings, Tetrahedron Lett., 339 (1970).
(59) J. M. Lehn and J. Wagner, Chem. Commun., 1298 (1968).
(60) J. R. Fletcher and i. O. Sutherland. Chem. Commun., 706 (1969).
(61) J. E. Anderson, D. L. Griffith, and J. D. Roberts, J. Am. Chem. Soc., 91, 6371 (1969).
(62) H. J. Koehier, Z. Chem., 13, 157 (1973), and references therein.
(63) (a) J. A. Popie, Acc. Chem. Res., 3, 217 (1970); W. J. Hehre, R. F. Stewart, and J. A. Popie, J. Chem. Phys., 51, 2657 (1969); (b) R. Ditchfieid, W. J. Hehre, and J. A. Popie, lbid., 54, 724 (1971).
(64) Availabie from Quantum Chemistry Program Exchange, Chemistry Department, indlana University, Bloomington, ind., as program OCPE 238.
(65) (a) G. T. Armstrong and S. Marantz, J. Chem. Phys., 38, 169 (1962). See aiso (b) J. Binenboym, A. Burcat, A. Lifshitz, and J. Shamir, J. Am. Chem. Soc., 88, 5039 (1966).
(66) R. J. Gillespie, J. Chem. Educ., 47, 18 (1970); R. J. Giliespie and R. S. Nyhoim, Q. Rev., Chem. Soc., 11, 339 (1957).
(67) L. Pedersen and K. Morokuma, J. Chem. Phys., 46, 3941 (1967).
(68) W. H. Fink, D. C. Pan, and L. C. Alien, J. Chem. Phys., 47, 895 (1967).
(69) W. H. Fink and L. C. Alien, J. Chem. Phys., 46, 2261,2276 (1967).
(70) A. Velilard, Theor. Chim. Acta, 5, 413 (1966).
(71) A. Veillard, Chem. Phys. Lett., 4, 51 (1969).
(72) R. M. Stevens, J. Chem. Phys., 52, 1397 (1970).
(73) J.-B. Robert, H. Marsmann, and J. R. Van Wazer, Chem. Commun., 356 (1970).
(74) A. Veiliard and J. Demuynck, Chem. Phys. Lett., 4, 476 (1970).
(75) E. L. Wagner, Theor. Chim. Acta, 23, 115 (1971).
(76) L. Radom, W. J. Hehre, and J. A. Popie, J. Am. Chem. Soc., 94, 2371 (1972).
(77) S. Woife, Acc. Chem. Res., 5, 102 (1972); S. Woife, A. Rauk, L. M. Tei, and i. G. Csizmadia, J. Chem. Soc. B, 136 (1971); S. Woife, L. M. Tei, J. H. Llang, and I. G. Csizmadia, J. Am. Chem. Soc., 94, 1361
(1972).
(78) F. A. Van-Catiedge, J. Am. Chem. Soc., 96, 5693 (1974).
(79) N. D. Epiotis and W. Cherry, J. Chem. Soc., Chem. Commun., 278 (1973); N. D. Epiotis, J. Am. Chem. Soc., 95, 3087 (1973); N. D. Epiotis, D. Bjorkquist, and S. Sarkanen, Ibid., 95, 7558 (1973).
(80) J. M. Howeil and J. R. Van Wazer, J. Am. Chem. Soc., 96, 7902 (1974).
(81) R. Hoffmann, C. C. Levin, and R. A. Moss, J. Am. Chem. Soc., 95, 629 (1973).
(82) There are a number of cases where this approach has been used before. Of particuiar importance is the work on bond angies in substituted ethyienes: P. Koiiman, J. Am. Chem. Soc., 96, 4363 (1974). See aiso: R. Hoffmann, J. M. Howeil, and E. L. Muetterties, ibid., 94, 3047 (1972); A. Rauk, L. C. Alien, and K. Misiow, ibid., 94, 3035 (1972); J. M. Howeil, ibid., the foliowing paper in this issue.
(83) M. B. Robin and W. T. Simpson, J. Chem. Phys., 36, 580 (1962). See aiso: R. M. Hochstrasser and S. K. Lower, lbid., 36, 3505 (1962); G. Kortüm and H. Rau, Ber. Bunsenges. Phys. Chem., 68, 973 (1964); see aiso R. Hoffmann, Acc. Chem. Res., 4, 1 (1971).
(84) See for ieading references: C. M. Levin, J. Am. Chem. Soc., 97, 5649 (1975).
(85) R. Hoffmann, J. Chem. Phys., 39, 1397 (1963).
(86) (a) M. D. Newton, F. P. Boer, and W. N. Lipscomb, J. Am. Chem. Soc., 88, 2367 (1966); (b) M. D. Newton and W. N. Lipscomb, Ibid., 89, 4261 (1967); (c) J. A. Popie and M. Gordon, ibid. , 89, 4253 (1967); (d) W. J. Hehre and J. A. Popie, Tetrahedron Lett., 2959 (1970); (e) J. Am. Chem. Soc., 92, 2191 (1970); (f) J. A. Popie, Acc. Chem. Res., 3, 217 (1970).
(87) J. E. Bioor and D. L. Breen, J. Phys. Chem., 72, 716 (1968).
(88) P. M. Kuznesof and D. F. Shriver, J. Am. Chem. Soc., 90, 1683 (1968).
(89) R. T. C. Browniee and R. W. Taft, J. Am. Chem. Soc., 90, 6537 (1968); 92, 7007 (1970).
(90) N. C. Baird, Can. J. Chem., 47, 2306 (1969).
(91) M. L. Unland, J. R. Van Wazer, and J. H. Letcher, J. Am. Chem. Soc., 81, 1045 (1969).
(92) P. H. Owens, R. A. Woif, and A. Streitwieser, Tetrahedron Lett., 3385 (1970).
(93) H. Koiimar and H. O. Smith, Angew. Chem., 82, 444 (1970); Theor. Chim. Acta, 20, 65 (1971).
(94) J. R. Grunweil and J. F. Sebastian, Tetrahedron, 27, 4387 (1971).
(95) G. R. Howe, J. Chem. Soc. B, 981,984 (1971).
(96) J. M. André, Ph. Degand, and G. Leroy, Bull. Soc. Chim. Belg., 80, 585 (1971).
(97) L. Libit and R. Hoffmann, J. Am. Chem. Soc., 96, 1370 (1974).
(98) STO4-31G caiculations were also performed yielding: for the cis isomer (-109.7988 hartrees) $N=N 1.224 A, N-H 1.019 A$, and $\angle N N H$ 116.0°; for the transition state (-109.7358 hartrees) $\mathrm{N}=\mathrm{N} 1.217 \AA$, $H-N 1.031 A, N-H^{\prime} 0.977 A, \angle H N N 112.0^{\circ}$; and for trans (-109.8127 hartrees) $N=N 1.225 \AA, N-H 1.011 A$, and $N N H 110.7^{\circ}$.
(99) The STO4-31G results were comparabie. The hydrogen involved in the inversion becoming positive $(0,463)$ and the nitrogen negative (-0.547).
(100) (a) H. Boersch, Monatsh. Chem., 65, 311 (1935).
(101) The p_{π} occupations for the STO4-31G extended basis set caiculations were 1.045 for the cis and 1.039 for the trans.
(102) The STO4-31G geometry optimized caiculations yleided: for the cis isomer (-307.14607 hartrees) $N=N 1.197 A, N-F 1.403 A, \angle N N F$ 114.8°; for the transition state (-307.03272 hartrees) $N=N 1.142 \AA$, $F-N$ i. $607 A, N-F^{\prime} 1.318 A, \angle F N N 110.0^{\circ}$; for the trans isomer $\left(-307.14440\right.$ hartrees) $N=N 1.199 \AA, N-F 1.399 \AA, \angle N N F 106.7^{\circ}$.
(103) R. L. Kuczkowski and E. B. Wilson, Jr., J. Chem. Phys., 39, 1030 (1963).
(104) F. D. Marsh and M. E. Hermes, J. Am. Chem. Soc., 87, 1819 (1965). Note that this finding has been questioned (B. Bak and P. Jansen, J. Mol. Struct.,-11, 25 (1972)).
(105) B. Bak and P. Jansen, J. Mol. Struct., 12, 167 (1972).

